Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Comput Biol ; 19(6): e1011149, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-20235652

RESUMEN

COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severity through time. Using anonymized hospitalization data from March 11, 2020 to June 1, 2021 and fine-grain infection hospitalization rates, we estimate the time-varying burden of COVID-19 by age group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 23.7% (95% CrI: 22.5-24.8%) infection rate and 29.4% (95% CrI: 28.0-31.0%) case reporting rate. Individuals over 65 were less likely to be infected than younger age groups (11.2% [95% CrI: 10.3-12.0%] vs 25.1% [95% CrI: 23.7-26.4%]), but more likely to be hospitalized (1,965 per 100,000 vs 376 per 100,000) and have their infections reported (53% [95% CrI: 49-57%] vs 28% [95% CrI: 27-30%]). We used a mixed effect poisson regression model to estimate disparities in infection and reporting rates as a function of social vulnerability. We compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0-3.0) times the infection rate and only 70% (95% CrI: 60%-82%) the reporting rate compared to the less vulnerable communities. Inequality persisted but declined significantly over the 15-month study period. Our results suggest that further public health efforts are needed to mitigate local COVID-19 disparities and that the CDC's social vulnerability index may serve as a reliable predictor of risk on a local scale when surveillance data are limited.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Etnicidad , Hospitalización , Salud Pública
2.
Sci Rep ; 13(1): 9371, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-20236010

RESUMEN

Communities worldwide have used vaccines and facemasks to mitigate the COVID-19 pandemic. When an individual opts to vaccinate or wear a mask, they may lower their own risk of becoming infected as well as the risk that they pose to others while infected. The first benefit-reducing susceptibility-has been established across multiple studies, while the second-reducing infectivity-is less well understood. Using a new statistical method, we estimate the efficacy of vaccines and facemasks at reducing both types of risks from contact tracing data collected in an urban setting. We find that vaccination reduced the risk of onward transmission by 40.7% [95% CI 25.8-53.2%] during the Delta wave and 31.0% [95% CI 19.4-40.9%] during the Omicron wave and that mask wearing reduced the risk of infection by 64.2% [95% CI 5.8-77.3%] during the Omicron wave. By harnessing commonly-collected contact tracing data, the approach can broadly provide timely and actionable estimates of intervention efficacy against a rapidly evolving pathogen.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Trazado de Contacto , Pandemias , Vacunación
3.
Proc Natl Acad Sci U S A ; 120(18): e2207537120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2303598

RESUMEN

Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Incertidumbre , Brotes de Enfermedades/prevención & control , Salud Pública , Pandemias/prevención & control
4.
Proc Natl Acad Sci U S A ; 119(48): e2213313119, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2257664

RESUMEN

Hong Kong has implemented stringent public health and social measures (PHSMs) to curb each of the four COVID-19 epidemic waves since January 2020. The third wave between July and September 2020 was brought under control within 2 m, while the fourth wave starting from the end of October 2020 has taken longer to bring under control and lasted at least 5 mo. Here, we report the pandemic fatigue as one of the potential reasons for the reduced impact of PHSMs on transmission in the fourth wave. We contacted either 500 or 1,000 local residents through weekly random-digit dialing of landlines and mobile telephones from May 2020 to February 2021. We analyze the epidemiological impact of pandemic fatigue by using the large and detailed cross-sectional telephone surveys to quantify risk perception and self-reported protective behaviors and mathematical models to incorporate population protective behaviors. Our retrospective prediction suggests that an increase of 100 daily new reported cases would lead to 6.60% (95% CI: 4.03, 9.17) more people worrying about being infected, increase 3.77% (95% CI: 2.46, 5.09) more people to avoid social gatherings, and reduce the weekly mean reproduction number by 0.32 (95% CI: 0.20, 0.44). Accordingly, the fourth wave would have been 14% (95% CI%: -53%, 81%) smaller if not for pandemic fatigue. This indicates the important role of mitigating pandemic fatigue in maintaining population protective behaviors for controlling COVID-19.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Gripe Humana/prevención & control , Hong Kong/epidemiología , Estudios Transversales , Estudios Retrospectivos , Fatiga/epidemiología , Fatiga/prevención & control
5.
PLoS One ; 18(4): e0284025, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2264513

RESUMEN

As SARS-CoV-2 emerged as a global threat in early 2020, China enacted rapid and strict lockdown orders to prevent introductions and suppress transmission. In contrast, the United States federal government did not enact national orders. State and local authorities were left to make rapid decisions based on limited case data and scientific information to protect their communities. To support local decision making in early 2020, we developed a model for estimating the probability of an undetected COVID-19 epidemic (epidemic risk) in each US county based on the epidemiological characteristics of the virus and the number of confirmed and suspected cases. As a retrospective analysis we included county-specific reproduction numbers and found that counties with only a single reported case by March 16, 2020 had a mean epidemic risk of 71% (95% CI: 52-83%), implying COVID-19 was already spreading widely by the first detected case. By that date, 15% of US counties covering 63% of the population had reported at least one case and had epidemic risk greater than 50%. We find that a 10% increase in model estimated epidemic risk for March 16 yields a 0.53 (95% CI: 0.49-0.58) increase in the log odds that the county reported at least two additional cases in the following week. The original epidemic risk estimates made on March 16, 2020 that assumed all counties had an effective reproduction number of 3.0 are highly correlated with our retrospective estimates (r = 0.99; p<0.001) but are less predictive of subsequent case increases (AIC difference of 93.3 and 100% weight in favor of the retrospective risk estimates). Given the low rates of testing and reporting early in the pandemic, taking action upon the detection of just one or a few cases may be prudent.


Asunto(s)
COVID-19 , Humanos , Estados Unidos/epidemiología , COVID-19/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , Control de Enfermedades Transmisibles , Pandemias/prevención & control
6.
Emerg Infect Dis ; 29(3): 501-510, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2244086

RESUMEN

In response to COVID-19, schools across the United States closed in early 2020; many did not fully reopen until late 2021. Although regular testing of asymptomatic students, teachers, and staff can reduce transmission risks, few school systems consistently used proactive testing to safeguard return to classrooms. Socioeconomically diverse public school districts might vary testing levels across campuses to ensure fair, effective use of limited resources. We describe a test allocation approach to reduce overall infections and disparities across school districts. Using a model of SARS-CoV-2 transmission in schools fit to data from a large metropolitan school district in Texas, we reduced incidence between the highest and lowest risk schools from a 5.6-fold difference under proportional test allocation to 1.8-fold difference under our optimized test allocation. This approach provides a roadmap to help school districts deploy proactive testing and mitigate risks of future SARS-CoV-2 variants and other pathogen threats.


Asunto(s)
COVID-19 , Humanos , Estados Unidos , COVID-19/epidemiología , SARS-CoV-2 , Instituciones Académicas , Prueba de COVID-19
7.
Epidemics ; 42: 100660, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2239182

RESUMEN

We estimated the probability of undetected emergence of the SARS-CoV-2 Omicron variant in 25 low and middle-income countries (LMICs) prior to December 5, 2021. In nine countries, the risk exceeds 50 %; in Turkey, Pakistan and the Philippines, it exceeds 99 %. Risks are generally lower in the Americas than Europe or Asia.


Asunto(s)
COVID-19 , Humanos , Países en Desarrollo , SARS-CoV-2 , Europa (Continente)
8.
Proc Natl Acad Sci U S A ; 119(34): e2200652119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1991763

RESUMEN

Although testing, contact tracing, and case isolation programs can mitigate COVID-19 transmission and allow the relaxation of social distancing measures, few countries worldwide have succeeded in scaling such efforts to levels that suppress spread. The efficacy of test-trace-isolate likely depends on the speed and extent of follow-up and the prevalence of SARS-CoV-2 in the community. Here, we use a granular model of COVID-19 transmission to estimate the public health impacts of test-trace-isolate programs across a range of programmatic and epidemiological scenarios, based on testing and contact tracing data collected on a university campus and surrounding community in Austin, TX, between October 1, 2020, and January 1, 2021. The median time between specimen collection from a symptomatic case and quarantine of a traced contact was 2 days (interquartile range [IQR]: 2 to 3) on campus and 5 days (IQR: 3 to 8) in the community. Assuming a reproduction number of 1.2, we found that detection of 40% of all symptomatic cases followed by isolation is expected to avert 39% (IQR: 30% to 45%) of COVID-19 cases. Contact tracing is expected to increase the cases averted to 53% (IQR: 42% to 58%) or 40% (32% to 47%), assuming the 2- and 5-day delays estimated on campus and in the community, respectively. In a tracing-accelerated scenario, in which 75% of contacts are notified the day after specimen collection, cases averted increase to 68% (IQR: 55% to 72%). An accelerated contact tracing program leveraging rapid testing and electronic reporting of test results can significantly curtail local COVID-19 transmission.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Trazado de Contacto , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , Prueba de COVID-19/normas , Prueba de COVID-19/estadística & datos numéricos , Trazado de Contacto/estadística & datos numéricos , Humanos , Cuarentena , SARS-CoV-2 , Texas/epidemiología
10.
Am J Epidemiol ; 191(5): 900-907, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1830972

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission continues to evolve, understanding the contribution of location-specific variations in nonpharmaceutical interventions and behaviors to disease transmission during the initial epidemic wave will be key for future control strategies. We offer a rigorous statistical analysis of the relative effectiveness of the timing of both official stay-at-home orders and population mobility reductions during the initial stage of the US coronavirus disease 2019 (COVID-19) epidemic. We used a Bayesian hierarchical regression to fit county-level mortality data from the first case on January 21, 2020, through April 20, 2020, and quantify associations between the timing of stay-at-home orders and population mobility with epidemic control. We found that among 882 counties with an early local epidemic, a 10-day delay in the enactment of stay-at-home orders would have been associated with 14,700 additional deaths by April 20 (95% credible interval: 9,100, 21,500), whereas shifting orders 10 days earlier would have been associated with nearly 15,700 fewer lives lost (95% credible interval: 11,350, 18,950). Analogous estimates are available for reductions in mobility-which typically occurred before stay-at-home orders-and are also stratified by county urbanicity, showing significant heterogeneity. Results underscore the importance of timely policy and behavioral action for early-stage epidemic control.


Asunto(s)
COVID-19 , Teorema de Bayes , COVID-19/prevención & control , Humanos , SARS-CoV-2
11.
Proc Natl Acad Sci U S A ; 119(15): e2113561119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1784075

RESUMEN

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.


Asunto(s)
COVID-19 , COVID-19/mortalidad , Exactitud de los Datos , Predicción , Humanos , Pandemias , Probabilidad , Salud Pública/tendencias , Estados Unidos/epidemiología
12.
Med Decis Making ; 41(1): 3-8, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1741762

RESUMEN

Widespread, convenient access to COVID-19 testing has been challenging in the United States. We make a case for provisioning COVID-19 tests through the United States Postal Service (USPS) facilities and demonstrate a simple method for selecting locations to improve access. We provide quantitative evidence that even a subset of USPS facilities could provide broad access, particularly in remote and at-risk communities with limited access to health care. Based on daily travel surveys, census data, locations of USPS facilities, and an established care-seeking model, we estimate that more than 94% of the US population would be willing to travel to an existing USPS facility if warranted. For half of the US population, this would require traveling less than 2.5 miles from home; for 90%, the distance would be less than 7 miles. In Georgia, Illinois, and Minnesota, we estimate that testing at USPS facilities would provide access to an additional 4.1, 3.1, and 1.3 million people and reduce the median travel distance by 3.0, 0.8, and 1.2 miles, respectively, compared with existing testing sites per 28 July 2020. We also discuss the option of distributing test-at-home kits via USPS instead of private carriers. Finally, our proposal provides USPS an opportunity to increase revenues and expand its mission, thus improving its future prospects and relevance.


Asunto(s)
Prueba de COVID-19 , Servicios Postales/organización & administración , COVID-19/diagnóstico , Accesibilidad a los Servicios de Salud , Humanos , Población Rural , SARS-CoV-2 , Estados Unidos
13.
MDM Policy Pract ; 7(1): 23814683221084631, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1741907

RESUMEN

Background. In mid-2020, there was significant concern that the overlapping 2020-2021 influenza season and COVID-19 pandemic would overwhelm already stressed health care systems in the Northern Hemisphere, particularly if influenza immunization rates were low. Methods. Using a mathematical susceptible-exposed-infected-recovered (SEIR) compartmental model incorporating the age-specific viral transmission rates and disease severity of Austin, Texas, a large metropolitan region, we projected the incidence and health care burden for both COVID-19 and influenza across observed levels of SARS-CoV-2 transmission and influenza immunization rates for the 2020-2021 season. We then retrospectively compared scenario projections made in August 2020 with observed trends through June 2021. Results. Across all scenarios, we projected that the COVID-19 burden would dwarf that of influenza. In all but our lowest transmission scenarios, intensive care units were overwhelmed by COVID-19 patients, with the levels of influenza immunization having little impact on health care capacity needs. Consistent with our projections, sustained nonpharmaceutical interventions (NPIs) in Austin prevented COVID-19 from overwhelming health care systems and almost completely suppressed influenza during the 2020-2021 respiratory virus season. Limitations. The model assumed no cross-immunity between SARS-CoV-2 and influenza, which might reduce the burden or slow the transmission of 1 or both viruses. Conclusion. Before the widespread rollout of the SARS-CoV-2 vaccine, COVID-19 was projected to cause an order of magnitude more hospitalizations than seasonal influenza because of its higher transmissibility and severity. Consistent with predictions assuming strong NPIs, COVID-19 strained but did not overwhelm local health care systems in Austin, while the influenza burden was negligible. Implications. Nonspecific NPI efforts can dramatically reduce seasonal influenza burden and preserve health care capacity during respiratory virus season. Highlights: As the COVID-19 pandemic threatened lives worldwide, the Northern Hemisphere braced for a potential "twindemic" of seasonal influenza and COVID-19.Using a validated mathematical model of influenza and SARS-CoV-2 co-circulation in a large US city, we projected the impact of COVID-19-driven nonpharmaceutical interventions combined with influenza vaccination on health care capacity during the 2020-2021 respiratory virus season.We describe analyses conducted during summer 2020 to help US cities prepare for the 2020-2021 influenza season and provide a retrospective evaluation of the initial projections.

14.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1671750

RESUMEN

Forecasting the burden of COVID-19 has been impeded by limitations in data, with case reporting biased by testing practices, death counts lagging far behind infections, and hospital census reflecting time-varying patient access, admission criteria, and demographics. Here, we show that hospital admissions coupled with mobility data can reliably predict severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission rates and healthcare demand. Using a forecasting model that has guided mitigation policies in Austin, TX, we estimate that the local reproduction number had an initial 7-d average of 5.8 (95% credible interval [CrI]: 3.6 to 7.9) and reached a low of 0.65 (95% CrI: 0.52 to 0.77) after the summer 2020 surge. Estimated case detection rates ranged from 17.2% (95% CrI: 11.8 to 22.1%) at the outset to a high of 70% (95% CrI: 64 to 80%) in January 2021, and infection prevalence remained above 0.1% between April 2020 and March 1, 2021, peaking at 0.8% (0.7-0.9%) in early January 2021. As precautionary behaviors increased safety in public spaces, the relationship between mobility and transmission weakened. We estimate that mobility-associated transmission was 62% (95% CrI: 52 to 68%) lower in February 2021 compared to March 2020. In a retrospective comparison, the 95% CrIs of our 1, 2, and 3 wk ahead forecasts contained 93.6%, 89.9%, and 87.7% of reported data, respectively. Developed by a task force including scientists, public health officials, policy makers, and hospital executives, this model can reliably project COVID-19 healthcare needs in US cities.


Asunto(s)
COVID-19/epidemiología , Hospitales , Pandemias , SARS-CoV-2 , Atención a la Salud , Predicción , Hospitalización/estadística & datos numéricos , Humanos , Salud Pública , Estudios Retrospectivos , Estados Unidos
15.
Lancet Reg Health Am ; 8: 100182, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-1620909

RESUMEN

BACKGROUND: As SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness. METHODS: Using a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized. FINDINGS: Assuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter. INTERPRETATION: Mass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants. FUNDING: US National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.

16.
Clin Infect Dis ; 73(12): 2257-2264, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1596073

RESUMEN

BACKGROUND: Global vaccine development efforts have been accelerated in response to the devastating coronavirus disease 2019 (COVID-19) pandemic. We evaluated the impact of a 2-dose COVID-19 vaccination campaign on reducing incidence, hospitalizations, and deaths in the United States. METHODS: We developed an agent-based model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and parameterized it with US demographics and age-specific COVID-19 outcomes. Healthcare workers and high-risk individuals were prioritized for vaccination, whereas children under 18 years of age were not vaccinated. We considered a vaccine efficacy of 95% against disease following 2 doses administered 21 days apart achieving 40% vaccine coverage of the overall population within 284 days. We varied vaccine efficacy against infection and specified 10% preexisting population immunity for the base-case scenario. The model was calibrated to an effective reproduction number of 1.2, accounting for current nonpharmaceutical interventions in the United States. RESULTS: Vaccination reduced the overall attack rate to 4.6% (95% credible interval [CrI]: 4.3%-5.0%) from 9.0% (95% CrI: 8.4%-9.4%) without vaccination, over 300 days. The highest relative reduction (54%-62%) was observed among individuals aged 65 and older. Vaccination markedly reduced adverse outcomes, with non-intensive care unit (ICU) hospitalizations, ICU hospitalizations, and deaths decreasing by 63.5% (95% CrI: 60.3%-66.7%), 65.6% (95% CrI: 62.2%-68.6%), and 69.3% (95% CrI: 65.5%-73.1%), respectively, across the same period. CONCLUSIONS: Our results indicate that vaccination can have a substantial impact on mitigating COVID-19 outbreaks, even with limited protection against infection. However, continued compliance with nonpharmaceutical interventions is essential to achieve this impact.


Asunto(s)
COVID-19 , Adolescente , Vacunas contra la COVID-19 , Niño , Brotes de Enfermedades/prevención & control , Humanos , SARS-CoV-2 , Estados Unidos/epidemiología , Vacunación , Desarrollo de Vacunas , Eficacia de las Vacunas
17.
Emerg Infect Dis ; 27(12): 3188-3190, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1496964

RESUMEN

We used the incidence of spike gene target failures identified during PCR testing to provide an early projection of the prevalence of severe acute respiratory syndrome coronavirus 2 variant B.1.1.7 in a university setting in Texas, USA, before sequencing results were available. Findings from a more recent evaluation validated those early projections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Texas/epidemiología , Universidades
18.
Ann Intern Med ; 174(11): 1586-1591, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1405523

RESUMEN

BACKGROUND: As of 28 July 2021, 60% of adults in the United States had been fully vaccinated against COVID-19, and more than 34 million cases had been reported. Given the uncertainty regarding undocumented infections, the population level of immunity against COVID-19 in the United States remains undetermined. OBJECTIVE: To estimate the population immunity, defined as the proportion of the population that is protected against SARS-CoV-2 infection due to prior infection or vaccination. DESIGN: Statistical and simulation modeling to estimate overall and age-specific population immunity. SETTING: United States. PARTICIPANTS: Simulated age-stratified population representing U.S. demographic characteristics. MEASUREMENTS: The true number of SARS-CoV-2 infections in the United States was inferred from data on reported deaths using age-specific infection-fatality rates (IFRs). Taking into account the estimates for vaccine effectiveness and protection against reinfection, the overall population immunity was determined as the sum of protection levels in vaccinated persons and those who were previously infected but not vaccinated. RESULTS: Using age-specific IFR estimates from the Centers for Disease Control and Prevention, it was estimated that as of 15 July 2021, 114.9 (95% credible interval [CrI], 103.2 to 127.4) million persons had been infected with SARS-CoV-2 in the United States. The mean overall population immunity was 62.0% (CrI, 58.4% to 66.4%). Adults aged 65 years or older were estimated to have the highest immunity level (77.2% [CrI, 76.2% to 78.6%]), and children younger than 12 years had the lowest immunity level (17.9% [CrI, 14.4% to 21.9%]). LIMITATION: Publicly reported deaths may underrepresent actual deaths. CONCLUSION: As of 15 July 2021, the U.S. population immunity against COVID-19 may still have been insufficient to contain the outbreaks and safely revert to prepandemic social behavior. PRIMARY FUNDING SOURCE: National Science Foundation, National Institutes of Health, Notsew Orm Sands Foundation, Canadian Institutes of Health Research, and Natural Sciences and Engineering Research Council of Canada.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Preescolar , Femenino , Humanos , Inmunidad Colectiva , Lactante , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Estados Unidos/epidemiología
19.
Emerg Infect Dis ; 27(7): 1976-1979, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1278362

RESUMEN

During rollout of coronavirus disease vaccination, policymakers have faced critical trade-offs. Using a mathematical model of transmission, we found that timing of vaccination rollout would be expected to have a substantially greater effect on mortality rate than risk-based prioritization and uptake and that prioritizing first doses over second doses may be lifesaving.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Modelos Teóricos , SARS-CoV-2 , Estados Unidos/epidemiología , Vacunación
20.
Nat Commun ; 12(1): 3767, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1275921

RESUMEN

Community mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France's ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As proof-of-concept, we describe the optimization and maintenance of the staged alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May 2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Hospitalización/estadística & datos numéricos , COVID-19/transmisión , COVID-19/virología , Simulación por Computador , Atención a la Salud/métodos , Atención a la Salud/estadística & datos numéricos , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Unidades de Cuidados Intensivos/provisión & distribución , Cuarentena/métodos , SARS-CoV-2/aislamiento & purificación , Texas/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA